A Dynamical Approach to Accelerating Numerical Integration with Equidistributed Points

نویسندگان

  • O. Jenkinson
  • O. JENKINSON
  • M. POLLICOTT
چکیده

We show how ideas originating in the theory of dynamical systems inspire a new approach to numerical integration of functions. Any Lebesgue integral can be approximated by a sequence of integrals with respect to equidistributions, i.e. evenly weighted discrete probability measures concentrated on an equidistributed set. We prove that, in the case where the integrand is real analytic, suitable linear combinations of these equidistributions lead to a significant acceleration in the rate of convergence of the approximate integral. In particular, the rate of convergence is faster than that of any Newton–Cotes rule. DOI: 10.1134/S0081543807010166

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy functionals, numerical integration and asymptotic equidistribution on the sphere

In this paper, we study the numerical integration of continuous functions on d-dimensional spheres S ⊆ R by equally weighted quadrature rules based at N ≥ 1 points on S which minimize a generalized energy functional. Examples of such points are configurations, which minimize energies for the Riesz kernel ‖x− y‖−s 0 < s ≤ d and logarithmic kernel − log ‖x− y‖. We deduce that extremal point confi...

متن کامل

Pseudo-spectral ‎M‎atrix and Normalized Grunwald Approximation for Numerical Solution of Time Fractional Fokker-Planck Equation

This paper presents a new numerical method to solve time fractional Fokker-Planck equation. The space dimension is discretized to the Gauss-Lobatto points, then we apply pseudo-spectral successive integration matrix for this dimension. This approach shows that with less number of points, we can approximate the solution with more accuracy. The numerical results of the examples are displayed.

متن کامل

Equidistribution of the Fekete Points on the Sphere

The Fekete points are the points that maximize a Vandermonde-type determinant that appears in the polynomial Lagrange interpolation formula. They are well suited points for interpolation formulas and numerical integration. We prove the asymptotic equidistribution of the Fekete points in the sphere. The way we proceed is by showing their connection with other array of points, the Marcinkiewicz-Z...

متن کامل

Equidistribution of Fekete Points on the Sphere

Fekete points are the points that maximize a Vandermonde-type determinant that appears in the polynomial Lagrange interpolation formula. They are well suited points for interpolation formulas and numerical integration. We prove the asymptotic equidistribution of Fekete points in the sphere. The way we proceed is by showing their connection to other arrays of points, the so-called Marcinkiewicz-...

متن کامل

Accelerating high-order WENO schemes using two heterogeneous GPUs

A double-GPU code is developed to accelerate WENO schemes. The test problem is a compressible viscous flow. The convective terms are discretized using third- to ninth-order WENO schemes and the viscous terms are discretized by the standard fourth-order central scheme. The code written in CUDA programming language is developed by modifying a single-GPU code. The OpenMP library is used for parall...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006